KNOXing on the BELL: TALE Homeobox Genes and Meristem Activity
نویسندگان
چکیده
All plant organs are derived from meristems. The shoot apical meristem (SAM) produces the aerial part of the plant. It has two main functions: the maintenance of a group of stem cells at the center of the meristem and the initiation of organs at its periphery. The organs are initiated in a regular spatial pattern, referred to as phyllotaxy, and are separated from the surrounding tissue by a boundary domain. The KNOTTED-like homeobox (KNOX) family of transcription factors plays a key role in the control of SAM activity. These proteins belong to the three amino acid loop extension (TALE) homeodomain superclass and form heterodimers with other TALE proteins belonging to the BEL1-like (BELL) family. The KNOX proteins regulate the different activities of the SAM. They control SAM maintenance, boundary establishment, the correct patterning of organ initiation and the development of axillary meristems. They exert their effects through the regulation of several hormonal pathways. KNOX proteins repress gibberellin (GA) biosynthesis and activate cytokinin (CK) synthesis and signaling. In addition to their role in the SAM, they contribute to leaf form diversity. In plants with simple leaves, KNOX genes are expressed in the SAM and downregulated in leaf primordia, whereas in plants with dissected leaves their expression is reactivated in leaves. _____________________________________________________________________________________________________________
منابع مشابه
TALE and Shape: How to Make a Leaf Different.
The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and mo...
متن کاملThe interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence.
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high af...
متن کاملAntagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication
Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss spor...
متن کاملIdentification and Characterization of TALE Homeobox Genes in the Endangered Fern Vandenboschia speciosa
We report and discuss the results of a quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the expression patterns of seven three amino acid loop extension (TALE) homeobox genes (four KNOTTED-like homeobox (KNOX) and three BEL1-like homeobox (BELL) genes) identified after next generation sequencing (NGS) and assembly of the sporophyte and gametophyte transcriptome...
متن کاملKNOX genes: versatile regulators of plant development and diversity.
Knotted1-like homeobox (KNOX) proteins are homeodomain transcription factors that maintain an important pluripotent cell population called the shoot apical meristem, which generates the entire above-ground body of vascular plants. KNOX proteins regulate target genes that control hormone homeostasis in the meristem and interact with another subclass of homeodomain proteins called the BELL family...
متن کامل